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Abstract. A quantum mechanical plane rotor with time-dependent magnetic flux on its 
axis is considered in a representation in which the wavefunction is multivalued. If the 
representation is chosen such that the new kinetic angular momentum is equal to the old 
canonical angular momentum, the Schrodinger equation is simplified. An energy eigenfunc- 
tion expansion in the new representation is used to solve the Schrodinger equation exactly. 

1. Introduction 

The relationship between gauge transformations and the change of representation of 
the generalised coordinates and their conjugate canonical momentum has recently 
been discussed in connection with the Aharonov-Bohm effect (Bocchieri and Loinger 
1978, 1981, Rowe 1980, Zeilinger 1979, Mignaco and Novaes 1979, Bawin and Burnel 
1980, Bohm and Hiley 1979, Rothe 1981, Roy and Singh 1984, Klein 1980). A problem 
in which the difference between gauge invariance and change of representation is well 
illustrated is the plane rotor with time-dependent magnetic flux on its axis (Kobe 
1982b, Home and Sengupta 1983). In a previous paper, (Kobe 1983a) the problem 
was solved exactly in an arbitrary gauge. The Aharonov-Bohm effect was shown to 
exist because eigenvalues of the energy operator depend on the instantaneous magnetic 
flux. Some workers (Bocchieri and Loinger 1978, 1981, Wilczek 1982, Jackiw and 
Redlich 1983) have attempted to solve this problem by using ‘singular’ gauge transfor- 
mations. These ‘singular’ gauge transformations are not valid, but their effect can be 
realised by a change of representation of the canonical momentum operators (Kobe 
1982a). 

In this paper it is shown that a change of representation (Kretzschmar 1965, Asorey 
et al 1983) of the canonical momentum operators can be used to simplify the Schrodin- 
ger equation. In the new representation the new kinetic angular momentum is equal 
to the old canonical angular momentum (Kobe 1982a). The new wavefunction is no 
longer single valued but multivalued. The new Schrodinger equation does not depend 
on the magnetic flux, but only on its time derivative. The magnetic flux is now taken 
into account by the boundary condition on the new wavefunction (Kretzschmar 1965). 

The energy operator eigenvalue problem was solved by Merzbacher (1962) in the 
static case using the standard single-valued representation. For the time-dependent 
case the energy operator eigenvalue equation has the same form, since the kinetic 
momentum involves the instantaneous flux (Yang 1976, Kobe and Smirl 1978). In the 
new representation the energy operator no longer involves the magnetic flux. The 
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magnetic flux is now taken into account by the boundary condition on the energy 
eigenfunctions. The energy eigenvalues are consequently the same as in the standard 
representation in which the eigenfunctions are single valued (Kretzschmar 1965). An 
eigenfunction expansion is used to solve the Schrodinger equation exactly. The 
wavefunction in the multivalued representation is transformed to the single-valued 
representation. 

A number of workers (Bocchieri and Loinger 1978, 1981, Roy and Singh 1984) 
have questioned whether the wavefunction must be single valued in the standard 
representation of the canonical momentum ( p  = -iftV). If it is not, the Aharonov-Bohm 
effect can be made to vanish. The single valuedness of the wavefunction depends on 
the eigenvalues of the z-component of the orbital angular momentum being integers. 
The integer values of the z-component of orbital angular momentum eigenvalues were 
proved by Louck (1963) and Buchdahl (1962) using the algebra of the commutation 
relations and the form of orbital angular momentum ( L  = r x p ) .  

In § 2 the potentials and the Schrodinger equation for the plane rotor are reviewed. 
The change of representation to a multivalued wavefunction for which the new kinetic 
angular momentum is equal to the old canonical angular momentum is made in § 3. 
In  § 4 the energy eigenvalue equation is solved in the new representation and in 0 5 
the Schrodinger equation is solved in the new representation. The conclusion is given 
in § 6 .  

2. Plane rotor with time-dependent magnetic flux 

The vector and scalar potentials for a time-dependent magnetic field confined to the 
z axis are given in a general gauge. The Schrodinger equation for a plane rotor in an 
orbit about the z-axis is given in the standard representation in which the wavefunction 
is single valued. 

2.1. Potentials 

The magnetic field is confined to the z-axis, and is infinite in such a way that the 
magnetic flux is @( t ) .  The magnetic induction is 

B = @( t ) 6 ( x ) 6 ( y ) ? .  (2.1) 

A = & q t ) g ( e ,  t ) 1 2 ~ p ,  (2.2) 

A vector potential A which gives the magnetic induction field B =  V x A  in (2.1) is 

where the function g ( 0 ,  t )  is an arbitrary function of 8 ( O s  e <  2 r )  and time t subject 
to the constraint 

For p > 0 B is zero, but by Stokes’s theorem the flux at p = 0 is @( t )  when (2.3) is used. 
If the flux @( t )  is changing in time, there is an induced electric field by Faraday’s 

law, EMF = -61 c, so 

E = -&b(tj/2rpc, (2.4) 
where the dot denotes the time derivative. The electric field is E = -VAo-aA/atc, 
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where the scalar potential A. is 

and 

for 0 6 < 27~. The dot over the f in (2.5) denotes the partial time derivative. 

2.2. Schrodinger equation 

In the problem of the plane rotor, the Hilbert space of wavefunctions is defined on 
Y = { ( p ,  0, z ) ( p  = a > 0, 6 E [0,2n),  z = 0}, because the electron is constrained to move 
on a circular orbit of radius a. Since the generalised coordinate is 6, the ?omentum 
conjugate to it is the canonical angular momentum Pe = -iha/ae. I f  Ae = pi9 * A = -AB, 
the Schrodinger equation can be written ast  

(2.7) (1/21)(pe+qAe/c)’+(e, t )  = - c ( p o +  qAo/c)+CI(e, t ) ,  

where po  = -iha/axo, xo = ct, and the moment of inertia is I = ma2. 
The kinetic angular momentum is 

pe+qA,/c=h[-ia/ae-(Y(t)g(B, t)]  (2.8) 

by ( 2 . 2 ) ,  where 

a(?) = q O ( t ) / 2 d I c  (2.9) 

is dimensionless. The Schrodinger equation in (2.7) then becomes 

(h’/21)[-ia/ae - a (  t ) g (  e, t)]’+( e, t )  

=h[ia/at-ci(t)[B-f(O, t )]+a(r) j ’ (e ,  t ) ] + ( e ,  t ) ,  (2.10) 

from (2.5). The wavefunction + is single valued so it satisfies the boundary condition 
44271, t )  = $(O, t ) .  The initial wavefunction +(e,  0) is assumed known. Equation (2.10) 
was previously solved exactly. Nevertheless by using a representation in which the 
new kinetic angular momentum is the old canonical angular momentum it can be 
significantly simplified. 

2.3. ‘Singular’ gauge transformations 

Several workers (Bocchieri and Loinger 1978, 1981, Wilczek 1982, Jackiw and Redlich 
1983) have attempted to simplify (2.10) by making a ‘singular’ gauge transformation 
to eliminate the vector potential. The ‘singular gauge function’ A, = -O( t ) f (  8, t)/27r 
defined on 913, Euclidean three space, satisfies 

V X V A , =  - O ( t ) 6 ( ~ ) 8 ( ~ ) . ?  (2.11) 

Since any gauge function must satisfy V X V A  = 0 everywhere in 913, A, is not a valid 
gauge function. The new vector potential is A’= A + V A .  If A, is used then the new 

t In Kobe (1983a) the kinetic momentum in (3 .1)  should read Pe - qAe/c to be consistent with the notation 
of this paper in which p e  + qA,/c is used. Nevertheless, the results of Kobe are correct. The scalar potential 
6 of Kobe has been replaced by A,, in this paper. 
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magnetic induction field B‘ = V x A’ is 

B ’ =  B+V xVA,=O,  (2.12) 

everywhere in 3’ by (2.11). Since B’Z B the function As cannot be regarded as a 
valid gauge function, since a change of the gauge of the potentials must not change 
the electromagnetic field. If the magnetic field is changed, the problem is different 
from the original one (Kobe 1982a). 

3. Change of representation 

The Schrodinger equation can be simplified by using a representation of the momentum 
operator in which the vector potential is cancelled, so that the new kinetic angular 
momentum reduces to the old canonical angular momentum (Kobe 1982a). The 
wavefunction in this representation is no longer single valued (continuous) but is 
multivalued (discontinuous) (Kretzschmar 1965). The solution to the Schrodinger 
equation in an arbitrary time-dependent gauge with the new boundary condition is 
simpler than in the standard representation. 

3.1. Unitary transformations 

A unitary transformation on the generalised coordinates and their conjugate canonical 
momenta gives a change of representation of the operators which preserves the 
canonical commutation relations (Kretzschmar 1965). If is a differentiable function 
defined on 9, then the canonical momentum operators are transformed to 

(3.1) p m  CL = exp( -iT)p, exp(ir)  

where j~ = 0, 8, while 0 and xo = ct are unchanged. The wavefunction qj  must also be 
transformed, 

kr, = exp(-ir)& (3.2) 
to preserve the form invariance of the Schrodinger equation. 

The Schrodinger equation in (2.7) in the new representation is 

(1/21)(pLr)+ qAe/c)’+(r, = -c(pbr’+ qAo/c)lL(r). (3.3) 

3.2. Representation in which new kinetic momentum is old canonical momentum 

A new representation can be chosen so that the new kinetic angular momentum is 
equal to the old canonical angular momentum (Kobe 1982a). Choose 

r =  a(t)f(O, t ) ,  (3.4) 
where a is defined in (2.9) and f is defined in (2.6). In this representation the new 
kinetic angular momentum is 

p p f )  + qAB/ c = p s  + haaf( e, t ) / a e  - hag(  e, t )  = Pel (3 .5)  
where the old canonical angular momentum is 
the new kinetic angular momentum is 

= -iha/ae. The zero component of 

p g f ) + q A 0 / c =  -(h/c)[ia/at-d.(t)e]. (3.6) 
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In this new representation the Schrodinger equation in (3.3) becomes 

where the new wavefunction is 

+(a/,(& t )  = exp[-i.(tlf(4 t) l+(e,  2 )  

from (3.2). 
The boundary condition for is 

(3.8) 

since +(a, , (O,  t )  = +(O,  t )  = +(277, t ) ,  f(277, t )  = 277, and f ( 0 ,  t )  = 0 by (3.8) and (2.6). 
The value +(277, t )  is defined as lim +(277 - E ,  t )  as E > 0 goes to zero. Similar definitions 
hold for 1,b(~,~(277, t )  and f(277, t ) .  Since 277a = q@(t ) /hc  is arbitrary, (3.9) shows that 
the wavefunction in this new representation is not continuous at t9 = 0. 

Equation (3.7) is equivalent to (2.10) even though it does not involve the magnetic 
flux but only its time derivative. The magnetic flux enters the problem through the 
boundary condition in (3.9). For static flux the boundary condition in (3.9) ensures 
the existence of the Aharonov-Bohm effect in the new representation, even though 
the Schrodinger equation in (3.7) does not involve the flux (Ktretzschmar 1965). 

4. Energy eigenvalue equation 

In the representation r = af the gauge-invariant energy operator is (Yang 1976, Kobe 
and Smirl 1978, Kobe 1983a) 

%((oil., = ( 1 / 21)( pFf’ + q&/ c)’ = ( 1 / 2 1 ) ~ :  (4.1) 

from (3.5). The energy operator eigenvalue equation is? 

%(c./)+n(a/, = E n + n ( o f ) ,  (4.2) 

where the energy eigenfunctions Gnca f ,  satisfy the boundary condition in (3.9). For 
the energy operator in (4.1), the energy eigenfunctions are 

+n(a / ) (e ,  2)  = ( 2 ~ ) - ’ ’ ~  exp{i[n -.me}, (4.3) 

where n is an integer and a is given in (2.9). From (4.2) the energy eigenvalues are 

E,(  t )  = fi2[n - a (  t ) ] ’ /21 ,  (4.4) 

which is the same as obtained in the standard representation (Kobe 1983a). 
The kinetic angular momentum in the new representation is given in (3.5) as -ifia/ae. 

Equation (4.3) is also an eigenfunction of this operator, since it commutes with 
in (4.1). The eigenvalue of the kinetic angular momentum is [n - a ( t ) ] h ,  the same as 
obtained in the standard representation (Kobe 1983a). 

t Merzbacher (1962) considers only the problem of static flux and uses a time-independent gauge. He claims 
that only single-valued wavefunctions are valid. 
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5. Solution of the Schrodinger equation 

In the new representation the Schrodinger equation can easily be solved if the wavefunc- 
tion at time t = 0 is given. By making an expansion in terms of the energy eigenfunctions 
in (4.3), the boundary condition in (3.9) is satisfied. The energy eigenfunction 
expansion was used previously to solve the Schrodinger equation in the standard 
representation (Kobe 1983a). 

If the wavefunction is given at time zero, the wavefunction at some subsequent 
time can be determined from the Schrodinger equation in (3.7). If +(af)( 8, t )  is expanded 
in terms of the eigenfunctions in (4.3), 

the expansion coefficients are interpretable as the probability amplitudes of finding 
the system in an energy eigenstate (Yang 1976, Kobe and Smirl 1978). If (5.1) is 
substituted into the Schrodinger equation in (3.7) and the result is simplified, the 
equation for the probability amplitudes is 

(5.2) 

The matrix element in (5.2) can be evaluated from (3.6) and (4.3), which gives 

( (Ln(af) I ( pPf’ + qAo/ c)  +m( a f j )  

= -(h/c)(+n(af)l (ia/at-k@)(Lm(m/,)=o, (5.3) 

(5.4) 

for all n, m. Therefore, (5.2) becomes 

ific,, - E,C, = 0, 

which has the solution 

c , ( t )=exp(  -(i /h) /ofdt.En(t.))cn(0). ( 5 . 5 )  

Equation ( 5 . 5 )  is the same solution for the probability amplitude as obtained in the 
single-valued representation. For the probability that the system is in an energy 
eigenstate (5.5) gives P n ( t ) =  lc , ( t ) l2= P,,(O), a constant no matter how the flux varies 
in time (neglecting radiation). 

The wavefunction +(a,j is obtained by substituting (4.3) and (5.5) into (5.1), which 
gives 

From (3.8) the wavefunction in the standard representation which is the solution to 
(2.10) is 

448, t )  = exp{-ia(t)[O - f ( 8 ,  2131 

which can be verified by direct substitution. This wave function was obtained previously 
as a solution of (2.10) using the standard representation (Kobe 1983a). 
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6. Conclusion 

The use of a representation which gives a multivalued (or discontinuous) wavefunction 
may be useful at times (Kretzschmar 1965). For the plane rotor the Schrodinger 
equation is simplified by using a representation which makes the new kinetic angular 
momentum equal to the old canonical angular momentum (Kobe 1982a). The solution 
of the Schrodinger equation is also simplified. The wavefunction can always be 
transformed to the standard representation. The eigenvalues of physically observable 
operators like energy and kinetic angular momentum are unchanged by a change in 
the representation. Since expectation values of observable operators are likewise 
unchanged under a change of representation, the Ehrenfest theorems (Kobe 1983a,b) 
for observables are still satisfied. 
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